Connections of the limbic network: a corticocortical evoked potentials study.
نویسندگان
چکیده
Papez proposed a network for higher brain function, which is termed the limbic network. However, the in vivo human limbic network has not been established. We investigated the connectivity of the human limbic system using corticocortical evoked potential (CCEP). This retrospective analysis included 28 patients with medically intractable focal epilepsy who underwent stereoelectroencephalography (SEEG) and CCEP. Alternating 1 Hz electrical stimuli were delivered to parts of the limbic system [anterior and posterior hippocampus, temporal pole, parahippocampal gyrus (PHG), amygdala, anterior (ACG) and posterior cingulate gyrus (PCG), medial and lateral orbitofrontal cortex (OF)]. A total of 40-60 stimuli were averaged in each trial to obtain CCEP responses. CCEP distributions were evaluated by calculating the root mean square (RMS) of CCEP responses. Anterior hippocampal stimulation elicited prominent CCEP responses in medial and lateral temporal structures, PCG, medial OF and insula over the ipsilateral hemisphere. Posterior hippocampal stimulation induced CCEP responses in the ipsilateral medial and lateral temporal structures and PCG. The findings also revealed connections from temporal pole to the ipsilateral medial temporal structures, and connections from PHG to the ipsilateral hippocampus and PCG. The amygdala projected to broad areas including the ipsilateral medial and lateral temporal structures, medial and lateral frontal areas, the cingulate gyrus, insula and inferior parietal lobule. ACG and PCG showed connections to the ipsilateral medial fronto-parietal areas and connections to bilateral medial temporo-parieto-occipital and lateral parieto-occipital areas, respectively. Medial and lateral OF stimulation induced responses in the adjacent cortices. This study revealed that various regions within the limbic network are intimately connected in reverberating circuits and are linked to specific ipsilateral and contralateral regions, which may reflect distinct functional roles.
منابع مشابه
Corticocortical evoked potentials reveal projectors and integrators in human brain networks.
The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways)...
متن کاملA functional connection between inferior frontal gyrus and orofacial motor cortex in human.
The inferior frontal gyrus (IFG) of humans is known to play a critical role in speech production. The IFG is a highly convoluted and cytoarchitectonically diverse structure, classically forming 3 subgyri. It is reasonable to speculate that during speaking the IFG, or some portion of it, influences by corticocortical connections the orofacial representational area of primary motor cortex. To tes...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملGating of somatosensory input by human prefrontal cortex.
Somatosensory evoked potentials (SEPs) to median nerve stimulation were recorded in controls and in patients with focal lesions in dorsolateral prefrontal cortex (PFCx). Unilateral PFCx lesions increased the amplitude of the P26 component generated in postcentral areas 1 and 2. The amplitudes of the N28, P45 and N67 SEP components recorded over post-rolandic and frontal electrodes were also enh...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cortex; a journal devoted to the study of the nervous system and behavior
دوره 62 شماره
صفحات -
تاریخ انتشار 2015